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Long-range interactions in the quantum many-body problem in one dimension: Ground state
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We investigate the ground state properties of a family ofN-body systems in one dimension, trapped in a
polynomial potential and having long-range two-body interaction in addition to the inverse square potential
studied in the Calogero-Sutherland model~CSM!. We show that for such a Hamiltonian, the ground state
energy is similar to that of free fermions in a harmonic well with a displacement that depends on the number
of particles and depth of the well. We obtain the ground state wave function and using random matrix results,
study the particle density and pair correlation function~PCF!. We observe that the particles are arranged in
bands. Due to the presence of long-range interaction, the PCF shows a departure from the CSM.
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Theoretical understanding of the ground state proper
of complex many-body systems has received consider
attention in recent years@1–13#. In this context, we study
rigorously a wide class of one-dimensionalN-body systems
having different densities, nature, and strength of a two-b
interaction. We obtain the ground state properties of th
systems having a two-body potentialV25g/r 12

2 1F l , where
r 12 is the interparticle spacing andF l contains the long-
range two-body interaction. The system is trapped in a po
nomial potential. This may be relevant in understanding
various aspects of the Bose-Einstein condensates, whe
wide variety of potentials under a controlled environmen
possible.

We derive the ground state eigenvalues and eigenfu
tions for such systems and extract several interesting pro
ties by identifying the square of the wave function with t
joint probability distribution~JPD! of eigenvalues of non-
Gaussian ensembles of random matrices. Using the pol
mial method developed by Ghosh and Pandey in the con
of random matrix theory~RMT! @14,15#, we observe band
structure@16# in the particle density, which in turn corre
sponds to the density of zeros of the corresponding poly
mials @7,14,15#. For a given value of the interaction strengt
we study the pair correlation function~PCF! for different
interparticle spacings. Due to the presence of the long-ra
interaction, we observe a deviation from the Caloge
Sutherland model~CSM! @1,2#.

We shall consider the ground state of a system ofN par-
ticles satisfying the Schro¨dinger equation

F2(
i 51

N
]2

]xi
2

1)
i , j

g

~xi2xj !
2

1F l~xi ,xj !1V1~xi !2EnGcn

50, ~1!

where terms corresponding to long-range interaction de
from the relation

F l~xi ,xj !5h(
iÞ j

P~xi !

~xi2xj !
, ~2!
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P(x) being any analytic function having a power expansi
in x, while g andh are the interaction strengths. The syste
is trapped in a potential

V1~xi !5(
i 51

N

@P2~xi !2P8~xi !#. ~3!

In this paper, we consider the case whereP(x) is a polyno-
mial of order 2m11 and is represented by

P~x!5g(
k50

m

a2k11x2k11. ~4!

For convenience, we takea2m1151. The parameterg will
determine the depth of the well. The case wherem50 cor-
responds to the CSM@1#, where the two-body interaction i
purely of the inverse square type. Form.0, we will encoun-
ter the long-range interaction.

For such a Hamiltonian, the ground state wave funct
can be written as

c0[fw5)
i , j

uxi2xj ulexpF2(
i
E

0

xi
P~ t i !dti G . ~5!

It should be noted that if the particles are confined to a c
figuration spacex1.x2•••.xN , theg/r 2 interaction in one
dimension does not allow them to cross, thereby respec
the ordering. This is valid provided the potential is not t
attractive, which leads to the restrictiong>21/2 @1,17#. For
such an ordering, the modulus becomes irrelevant and he
depending on the value ofl ~odd or even! the system is
bosonic or fermionic in nature. Also, for such a configur
tion, c0 is nodeless~apart from the trivial ones at the point
of coincidence! and hence corresponds to the ground state
the system. Here

f5)
i , j

uxi2xj ul, ~6!

w5expF2(
i
E

0

xi
P~ t i !dti G , ~7!
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~l22l!5g/2, ~8!

and

2l52h. ~9!

The ground state energy is given by

E052ga1N@11l~N21!#. ~10!

For a1.0, this is the same as that of free fermions in
harmonic wellga1, displaced by a factorglNa1(N21).

First we prove that forP(xi) given by Eq.~4!, Eqs. ~5!
and~10! are, respectively, the ground state eigenfunction
eigenvalue. We study two cases, where we calculatec0 and
E0 and recognizec0

2 as the JPD of eigenvalues for the no
Gaussian ensembles of random matrices. Using the pol
mial method, we study the particle density and the effec
long-range interaction on the PCF. PCF shows a devia
from the CSM, which thereby suggests a departure from
‘‘universal’’ result of RMT.

The kinetic term of the Hamiltonian acting onc0 gives

2(
]2~fw!

]xi
2

52( w
]2~f!

]xi
2

22(
]~w!

]xi

]~f!

]xi

2( f
]2~w!

]xi
2

. ~11!

Substitutingc0 from Eq. ~5!, the first term gives

( w
]2~f!

]xi
2

5F2~l22l!(
i , j

1

~xi2xj !
2Gfw. ~12!

The second term gives

22(
]~w!

]xi

]~f!

]xi
52lfw(

iÞ j

P~xi !

~xi2xj !
, ~13!

while it is easy to see that the last term

2( f
]2~w!

]xi
2

5(
i

@P8~xi !2P2~xi !#fw. ~14!

Thus we see that our choice ofc0 diagonalizes the Hamil-
tonian ~1!. ReplacingP(xi) from Eq. ~4! in Eqs. ~13! and
~14!, one can easily obtain the ground state energy for
cases wherem>0.

We will consider the two cases, corresponding to

P~xi !5g~xi
32a1xi !, g.0 ~15!

and

P~xi !5g~xi
52a3xi

31a1xi !, g.0, a3,0. ~16!

They will not only illustrate the formation of multiple band
in the particle density for appropriate values of the param
a1, but also show the effect of long range interaction
determining the PCF.
03611
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The Hamiltonian corresponding to Eq.~15! is

H52(
]2

]xi
2

1)
i , j

g

~xi2xj !
2

2
hg

2 (
i , j

~xi2xj !
2

1g2(
k51

3

b2kxi
2k . ~17!

For 1@g.0, the system behaves like an anisotropic osci
tor, kept in a weak polynomial well. For such systems, t
motion is bounded for all physically possible energies. In
thermodynamic limit, i.e., forN→` andg→0, we will have
a finite particle density, whose shape will depend on the w
it is kept in. Finally, repeating the steps outlined earlier, o
can find that a choice ofc0,

c0[fw5)
i , j

uxi2xj ulexpF2gS (
i

xi
4

4
2a1

xi
2

2 D G , g.0,

~18!

satisfies the Schro¨dinger equation, withg and h given by
Eqs.~8! and ~9!, respectively, and

b651, b4522a1 , b25a1
22~6l13!/g. ~19!

For ga1
256l13 andg→0, we can obtain the ground sta

wave function and eigenvalue for the central poten
V(r 12)5Ar12

2 1B/r 12
2 and compare the result forN52 with

that obtained in Ref.@17#. For such a choice, we findE0

52(11l)A@3g(2l11)# as compared toE05Alg(2l
11) obtained in Ref.@17#. The deviation is due to the effec
of the potential well. ForN particles, the ground state energ
is given by Eq.~10! with a negative sign introduced due t
the negative coefficienta1. The Hamiltonian corresponding
to Eq. ~16! can be written as

H52(
]2

]xi
2

1)
i , j

g

~xi2xj !
2

1a1(
i , j

~xi2xj !
4

1a2(
i , j

~xi2xj !
21a3(

i , j
~xi1xj !

41g2(
k51

5

b2kxi
2k .

~20!

Here, the second, third, and fourth terms have the same
fect of making the particles remain in a bound state, with
parameterg and a3 controlling, respectively, the range an
depth of the potential.

Repeating the steps outlined earlier, one can find tha
choice ofc0,

c05)
i , j

uxi2xj ulexpF2gS (
i

xi
6

6
2a3(

i

xi
4

4
1a1

xi
2

2 D G ,

g.0, ~21!

with g.0, a3,0 satisfies the Schro¨dinger equation, withh
given by Eq.~9!, and
8-2
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a15lg/12, a252lga3 , a3525lg/12,

b1051, b8522a3 , b65~a3
212a1!,

b452@2a1a31~5110l/3!/g#, b25a1
21a3~6l13!/g.

~22!

The ground state energy is given by Eq.~10!. As in the
previous case, the parametera1 will not only determine the
position of the ground state but will also be crucial in det
mining the band structure.

It is at this point that we will writec0 in terms of the
variables

yi5S 1

l D 1/(2m12)

xi . ~23!

Thenc0 can be written as

c05C1/2)
i , j

uyi2yj ulexpF2l(
i
E

0

yi
P1~ t i !dti G , ~24!

where

P1~yi !5g(
k50

m

c2k11yi
2k11 ~25!

is a monic polynomial of order 2m11, whose coefficients
are related to those ofP(xi) by

c2k115S 1

l D (m2k)/(m11)

a2k11 . ~26!

Thenc0
2 is given by

c0
25C)

i , j
uyi2yj ubexpF2b(

i
E

0

yi
P1~ t i !dti G . ~27!

with b52l, and C being the normalization constant. No
one may interpretc0

2 to be identical with the JPD of non
Gaussian ensembles of random matrices@15#. We define the
n-particle correlation function

Rn~y1 ,y2 , . . . ,yn!5E •••E dyn11•••dyNc0
2 ~28!

as the probability of findingn particles in the intervalsyi and
yi1Dyi , irrespective of the position of the other particle
n51 and 2 correspond to the particle density and PCF,
spectively. It is shown in Ref.@15# thatR1(x) corresponds to
the density of zeros of the polynomial having weight fun
tion given by Eq.~7!. It has been shown by Dyson in th
context of random matrices that forb51, 2, and 4,Rn can
be written in terms of orthogonal and skew-orthogonal po
nomials. Forb52 ~Fig. 1!, the PCF can be written as

R2~y1 ,y2!5 (
m50

N21

hm
21@qm~y1!qm~y2!#expF22E

0

y2
P1~ t !dtG ,

~29!
03611
-
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where qm(y) are orthogonal polynomials corresponding
the normalization condition

E
2`

`

qm~y!qn~y!expF22E
0

y

P1~ t !dtGdy5hmdmn . ~30!

Now, we come back to the Hamiltonian discussed in E
~17!. For a1.0, the ground state energy is positive. Fora1

[ac5A2N/g, we define E0c5gacN@11l(N21)#. For
E0.E0c , we observe the formation of two bands in partic
density. Rescaling the result obtained by Pandey@16#, we get

pR1~y!5guyuA2N/g2~y22a1!2. ~31!

For 2E0c,E0,0, a passage through the barrier is po
sible resulting in a splitting of each of these levels into tw
neighboring ones, corresponding to the state in which
particles move simultaneously through both the barriers. T
corresponds to a single-band case with a dip around the
gin. Finally, for E0,2E0c , we get a single band with a
maximum aty50. This is given by

pR1~y!5gF 1

3g
$Aa1

216N/g22a1%1y2G
3F 2

3g
$Aa1

216N/g1a1%2y2G1/2

, ~32!

for a1<A2N/g for the single-band case. We observe that
finite R1(y), letting N→` implies that g→0 as N21. It
should be noted that in the thermodynamic limit, the parti
density, after proper scaling, is independent ofb and hence
applicable for both bosons and fermions. However the c
culation of the PCF, essential for the study of thermodynam
properties, is restricted tob51, 2, and 4. It has been prove
in Refs.@14,15# that for interparticle spacing (y12y2)[Dy
→0, N→` and definingr 5DyR1(y), the scaled PCF for
CSM is universal. Forb52, it is given by

FIG. 1. It shows the smoothed PCF@15# for the Hamiltonian
~17!, with b52, N550, a1560, andr 5DyR1(y). The curves cor-
respond to different values ofDy. The solid line corresponds to
CSM ~GUE! result, withDy51022.
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R2~r !512
sin2~pr !

~pr !2
. ~33!

For these systems withDy51027, we are in the region of
the spectrum where the particle density is high and he
interparticle spacing low. Here, PCF obeys Eq.~33!. How-
ever, forDy51023 and 1021, we are in the tail region of the
two bands. It is here that we observe a distinct deviat
from that observed in CSM. This is due to the contribution
the long-range interaction, where the third term in Eq.~17!
contributes to the PCF. This becomes negligible as
makesDy smaller, until it disappears forDy51027.

For the Hamiltonian corresponding to Eq.~20!, it can be
shown analytically that for largeN, the particle density~Fig.

FIG. 2. Particle density for the Hamiltonian given in Eq.~20!,
with N550. For a givena3 and different values of the paramet
a1, we observe a shift from single band to multiple band structu
ys

03611
e

n
f

e

2! can be written in terms of the higher moments as

pR1~x!5g@2x1012a3x82~a3
212a1!x6

1~2N/g12a1a3!x42~a1
222M2 /g12a3N/g!x2

1~2a1N12M422a3M2!/g#1/2 ~34!

whereM p5*xpR1(x)dx, x being the scaled variable. Thes
moments can be calculated numerically to obtainR1(x).
However, a more convenient way is to directly construct
polynomials through the recursion relation and to do the s
of Eq. ~29!, with x5y. For a3,0, we define a1[ac

5a3
2/4, which corresponds to a ground state energyE0c

52gacN@11l(N21)#. ForE0,E0c , we observe a single
band structure in the particle density. ForE0.E0c ~i.e., a1
,ac), the particles experience a repulsion at the center
thus we see a transition from single band to three band st
ture. AsE0!E0c , particles are completely repelled from th
center and finally collect at the two end of the spectru
thereby giving rise to two bands.

Thus we have studied, for both bosons and fermions,
ground state properties of a class ofN-body systems with
long-range two-body interaction in addition to the inver
square potential. We observe a distinct deviation from
universal result for the PCF, as obtained in the CSM. We a
observe that particles are arranged in bands. To study di
ent thermodynamic properties, it is necessary to study
excitation spectrum of such Hamiltonian. At finite temper
ture and finiteN, we expect similar smoothing of the osci
lations in the particle density@16# as observed in Ref.@18#.
We will come back to this in a later publication.

I am grateful to Dr. P. K. Panigrahi for many useful di
cussions.
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