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Long-range interactions in the quantum many-body problem in one dimension: Ground state
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We investigate the ground state properties of a famil\Ndjody systems in one dimension, trapped in a
polynomial potential and having long-range two-body interaction in addition to the inverse square potential
studied in the Calogero-Sutherland mod€lSM). We show that for such a Hamiltonian, the ground state
energy is similar to that of free fermions in a harmonic well with a displacement that depends on the number
of particles and depth of the well. We obtain the ground state wave function and using random matrix results,
study the particle density and pair correlation functi®CH. We observe that the particles are arranged in
bands. Due to the presence of long-range interaction, the PCF shows a departure from the CSM.
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Theoretical understanding of the ground state propertiep(x) being any analytic function having a power expansion
of complex many-body systems has received considerabli@ x, while g andh are the interaction strengths. The system
attention in recent yeargl-13. In this context, we study js trapped in a potential
rigorously a wide class of one-dimensiorddbody systems
having different densities, nature, and strength of a two-body N
interaction. We obtain the ground state properties of these Vl(xi)=2 [P2(x;))— P’ (x)]. (©)]
systems having a two-body potenMi:g/rfer ®,, where =1
ri, is the interparticle spacing an@, contains the long- . . :
range two-body interaction. The system is trapped in a poly!n this paper, we consider the case whe() is a polyno-

nomial potential. This may be relevant in understanding themlal of order 2n+1 and s represented by

various aspects of the Bose-Einstein condensates, where a m
wide variety of potentials under a controlled environment is P(x)= 72 Ay, XKL, (4)
possible. k=0

We derive the ground state eigenvalues and eigenfunc-
tions for such systems and extract several interesting propefor convenience, we tak&,,,;=1. The parametey will
ties by identifying the square of the wave function with the determine the depth of the well. The case whereO cor-
joint probability distribution(JPD of eigenvalues of non- responds to the CSML], where the two-body interaction is
Gaussian ensembles of random matrices. Using the polyngpurely of the inverse square type. For-0, we will encoun-
mial method developed by Ghosh and Pandey in the contexer the long-range interaction.
of random matrix theoryRMT) [14,15, we observe band For such a Hamiltonian, the ground state wave function
structure[16] in the particle density, which in turn corre- can be written as
sponds to the density of zeros of the corresponding polyno-
mials[7,14,15. For a given value of the interaction strength, . X
we study the pair correlation functiofPCP for different '/’OZQS‘P:E] |xi—xj|hexp{—§i: fo P(t)dt
interparticle spacings. Due to the presence of the long-range

interaction, we observe a deviation from the Calogero4t should be noted that if the particles are confined to a con-

. (5

Sutherland modelCSM) [1,2]. figuration space;>Xx,- - - >Xy, theg/r? interaction in one
~ We shall consider the ground state of a systenNgfar-  gimension does not allow them to cross, thereby respecting
ticles satisfying the Schdinger equation the ordering. This is valid provided the potential is not too
N2 . attractive, which leads to the restrictigee —1/2[1,17]. For
-S> 4] ———— B (X, %))+ V1(X) — En| ¥ such an ordering, the modulus becomes irrelevant and hence

depending on the value of (odd or evei the system is
bosonic or fermionic in nature. Also, for such a configura-
=0, (1) tion, o is nodelesgapart from the trivial ones at the points
of coincidencg and hence corresponds to the ground state of
fhe system. Here

=1 9x? 1<) (X=X

where terms corresponding to long-range interaction deriv
from the relation

P10 x) =S, 2 =11 Ix—x]" ®)

7 (X=X’

(P=exp{—2i f:ip(ti)dti}, @)
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(N=N\)=g/2, tS)
and
2 =—h. ©)
The ground state energy is given by
Eo=—yay;N[1+N(N—1)]. (10)
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The Hamiltonian corresponding to EA.5) is

H

4 9 hy

=— | ——-= —x:)2

> . L[J xx)? 2 Z] (X —X))
3

+ yzgl bax?X. (17)

For a,>0, this is the same as that of free fermions in gFor 1>vy>0, the system behaves like an anisotropic oscilla-

harmonic wellya,, displaced by a factoypANa;(N—1).
First we prove that folP(x;) given by Eq.(4), Egs.(5)

tor, kept in a weak polynomial well. For such systems, the
motion is bounded for all physically possible energies. In the

and(10) are, respectively, the ground state eigenfunction and"€rmedynamic limit, i.e., foN— o andy—0, we will have

eigenvalue. We study two cases, where we calculgtand

E, and recognize)? as the JPD of eigenvalues for the non-
Gaussian ensembles of random matrices. Using the polyn
mial method, we study the particle density and the effect of

long-range interaction on the PCF. PCF shows a deviation%zd)(p:]‘[ |xi—x-|“exr{—y
from the CSM, which thereby suggests a departure from the <] '

“universal” result of RMT.
The kinetic term of the Hamiltonian acting aky, gives

P*(pe) () (@) A(p)
-2 ox? —m2¢ ox? 22 i IX
(92
B ALy (11
IX;

Substitutingyyy from Eq. (5), the first term gives

() 1
=|2(\2= o . .
2 o2 |20 x)i§<}j — bo. (12
The second term gives
de) d(P) P(X;)
_ a_Xi&—Xi—Zhdwi; —x)" (13)

while it is easy to see that the last term

() , )
—2 o =2 [P0 -PAx) e (19
i
Thus we see that our choice @, diagonalizes the Hamil-
tonian (1). ReplacingP(x;) from Eg. (4) in Egs. (13) and

a finite particle density, whose shape will depend on the well
it is kept in. Finally, repeating the steps outlined earlier, one

&an find that a choice ofy,

x4 x2

4 alE) y ’y> O,
(18)

>

satisfies the Schdinger equation, withg and h given by
Egs.(8) and(9), respectively, and

be=1, b,=-2a,;, b,=aj—(6A+3)/y. (19
For ya§=67\+3 and y—0, we can obtain the ground state
wave function and eigenvalue for the central potential
V(ryp)=Ar2,+B/r3, and compare the result foi=2 with
that obtained in Ref[17]. For such a choice, we finf,
=2(1+N)\[3y(2 +1)] as compared toEq= A y(2\
+1) obtained in Ref[17]. The deviation is due to the effect
of the potential well. FON particles, the ground state energy
is given by Eq.(10) with a negative sign introduced due to
the negative coefficierd;. The Hamiltonian corresponding
to Eq. (16) can be written as

(92

-2

— II —g 4
+ Xi — X;
axt =i (x—x))? al;,-( )

5

2 4 2 2k

+a22 (Xi_xj) +C¥3E< (Xi+X]') +’y kzl bzkxi .
1<] <] =

(20

Here, the second, third, and fourth terms have the same ef-

(14), one can easily obtain the ground state energy for th@ect of making the particles remain in a bound state, with the

cases wheren=0.
We will consider the two cases, corresponding to

P(x)=y(x—a;x;), y>0 (15)
and
P(x)=7y(x’—axx’+a;x), y>0, az<0. (16

They will not only illustrate the formation of multiple bands

parametery and a; controlling, respectively, the range and
depth of the potential.

Repeating the steps outlined earlier, one can find that a
choice of g,

)(.6 x4 )(.2
vo=1I1 Ix; —xj|*exp — ¥ D a—azY o tao
i< T 6 T4 2

v>0,

(21)

in the particle density for appropriate values of the parameter
a;, but also show the effect of long range interaction inwith y>0, a;<0 satisfies the Schdinger equation, witth

determining the PCF.

given by Eq.(9), and

036118-2



LONG-RANGE INTERACTIONS IN QUANTUM . .. PHYSICAL REVIEW E69, 036118 (2004

a1=)\'y/12, a2=—7\'ya3, a3= -5\ ’)//12, g E{n""tﬁwﬂm'wﬂju
blO: 1, b8: _2a.3, b6:(a§+ 2a1): 08 . g/ o Ay=10-1 4
o
b,=—[2a;a3+(5+10\/3)/y], b,=a’+as(6\+3)/y. 1 e Ay=10"
(22 il *
RN [ ? A Ay=107
The ground state energy is given by HGO). As in the 04l e/ |
previous case, the parameter will not only determine the ' 4 — GUEresult
position of the ground state but will also be crucial in deter- /
mining the band structure. o2 { 1
It is at this point that we will writey in terms of the */
variables o / , ,
0 1 2 3
1)\ Y(2m+2) ;
Yi= (X) X; - (23
FIG. 1. It shows the smoothed PQE5] for the Hamiltonian
Then ¢, can be written as (17), with B=2,N=50, a; =60, andr =AyR,(y). The curves cor-

respond to different values afy. The solid line corresponds to
CSM (GUE) result, withAy=10"2.

Yi
vo=C¥1 |yi—yj|kex{—x2 JO Fﬁ(n)dti}, (24
= where g, (y) are orthogonal polynomials corresponding to
where the normalization condition

dy=h,s,,. (30

m °c y
Pa(yi)= YIZO Corr 1Y (25) J_wq“(y)q”(y)exl{ —ZL Py(t)dt

is a monic polynomial of order @+ 1, whose coefficients Now, we come back to the Hamiltonian discussed in Eq.
are related to those d¥(x;) by (17). Fora;>0, the ground state energy is positive. feqr
=a.=2N/y, we define Egc=vya.N[1+N(N—1)]. For

_(1 (m=ky/(m+1) g  Eo>Eoc, we observe the formation of two bands in particle
Cok+1™= N A2k 1+ (26) density. Rescaling the result obtained by Par{d®y}, we get
Then y; is given by mR1(Y)= YY[N2N y—(y?—ay)?. (31)

@) _ For —E0.C< EO<0, a passage through the barrie( iS pos-
sible resulting in a splitting of each of these levels into two
neighboring ones, corresponding to the state in which the

with =2\, and C being the normalization constant. Now particles move simultaneously through both the barriers. This

one may interpret//g to be identical with the JPD of non- corresponds to a single-band case with a dip around the ori-

Gaussian ensembles of random matricks]. We define the gin. Finally, for E,<—Eqy., we get a single band with a

i
¢§=Ci1;[j |Yi_yj|ﬁexf{_,82i fo P,(t)dt;

n-particle correlation function maximum aty=0. This is given by
1
Ra(Y1,Y2, - - ,yn)=f ---fdyn+1-~-dyw§ (28 le(y)zy[a{\/a5+6N/7—2al}+y2
as the probability of finding particles in the intervalg; and 12

(32

2
2
yi+Ay;, irrespective of the position of the other particles. X a{\/aﬁ 6N/y+a,}—y?
n=1 and 2 correspond to the particle density and PCF, re-

spectively. It is shown in Ref15] thatR,(x) corresponds to o o, < 2N/ for the single-band case. We observe that for

the density of zeros of the polynomial having weight func-finite R,(y), letting N— implies thaty—0 asN~L. It

tion given by Eq.(7). It has been shown by Dyson in the ghoyid be noted that in the thermodynamic limit, the particle

context of random matrices that f@=1, 2, and 4,R, can  gensity, after proper scaling, is independenigoiind hence

be written in terms of orthogonal and skew-orthogonal poly-gppjicable for both bosons and fermions. However the cal-

nomials. Forp=2 (Fig. 1), the PCF can be written as culation of the PCF, essential for the study of thermodynamic
N—1 properties, is restricted 8=1, 2, and 4. It has been proved

V2 i : - ; —
R V)= h-1 ex _zf P,(t)dt|. in Refs.[14,15 that fo'r interparticle spacingyg—y,)=Ay
2(Y1,Y2) uzo p 4u(YDu(Y2)] F{ 0 () } —0, N—o and definingr =AyR;(y), the scaled PCF for
(29) CSM is universal. Fop=2, it is given by
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15 - w 20 - 2) can be written in terms of the higher moments as
a.=30
12 a;=—10 115 B
ol ] mR1(X) = y[ — x*%+ 2a;x8— (a3+ 2a,)x®
10 .
6 ] +(2N/y+2a,a3)x*— (22— 2M, / y+ 2a3N/ y)x?
- - 5 B 1
_° +(2a;N+2M,—2asM,)/ y]V2 (34)
¥ 30 ' : 30
Pl =1 425 | = 1 : ;
2 :;=_f0 2 :':10 whereM ;= [xPR;(x)dx, x being the scaled variable. These
20 ?r d 1 moments can be calculated numerically to obt&(x).
15 ¢ 115 ] However, a more convenient way is to directly construct the
10 410 - . polynomials through the recursion relation and to do the sum
5L 15l - of Eg. (29), with x=y. For az<0, we definea;=a.
0 0 ‘ . ‘ =a§/4, which corresponds to a ground state enekgy
42 0 2 4420 24— A N[1+A(N—-1)]. ForEy<E,., we observe a single
X

band structure in the particle density. FB§>E,. (i.e., a;
FIG. 2. Particle density for the Hamiltonian given in Eg0),  <2ac). the particles experience a repulsion at the center and
with N=50. For a givera, and different values of the parameter thus we see a transition from single band to three band struc-

a;, we observe a shift from single band to multiple band structurefure. ASEo<E,, particles are completely repelled from the
center and finally collect at the two end of the spectrum,

Sir2(7rr) thereby giving rise to two bands.
Ry(r)=1— ———. (33 Thus we have studied, for both bosons and fermions, the
(mr)? ground state properties of a class Mfbody systems with

. 4 , . long-range two-body interaction in addition to the inverse
For these systems withy=10"', we are in the region of g4 are potential. We observe a distinct deviation from the
the spectrum where the particle density is high and hencgp;yersal result for the PCF, as obtained in the CSM. We also
interparticle spacing low. i—|ere, PCF obeys E8B). How-  gpserve that particles are arranged in bands. To study differ-
ever, forAy=10""and 10 *, we are in the tail region of the gt thermodynamic properties, it is necessary to study the
two bands. It is here that we observe a distinct deviation,citation spectrum of such Hamiltonian. At finite tempera-
from that observed in CSM. This is due to the contribution of; e 5nq finiteN, we expect similar smoothing of the oscil-
the long-range interaction, where the third term in Bf)  |51ions in the particle densitjl6] as observed in Ref18].
contributes to the PCF. This becomes negligible as ongye will come back to this in a later publication.
makesAy smaller, until it disappears faky=10"".

For the Hamiltonian corresponding to EQO), it can be | am grateful to Dr. P. K. Panigrahi for many useful dis-
shown analytically that for larghl, the particle densityFig.  cussions.
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